Gaussian elimination with partial pivoting.

1. Perform Gaussian elimination with partial pivoting on this matrix.

(1	1.5	4.6	-0.8	12.3
-3	3.5	-4.6	4.8	-22.3
	5.0	2.0	4.0	1.0

Answer:

(5	2	4	1)
0	4	-2	12
0	0	6	-12)

2. Perform Gaussian elimination with partial pivoting on this matrix.

$$\begin{pmatrix} 4.1 & 8.55 & 17.45 \\ 8.2 & 4.5 & -2.9 \end{pmatrix}$$

Answer:

$$\begin{pmatrix} 8.2 & 4.5 & -2.9 \\ 0 & 6.3 & 18.9 \end{pmatrix}$$

3. Perform Gaussian elimination with partial pivoting on this matrix.

.

(-	-3.5	-7.4	-0.1	3.7	22.3
	4.0	-2.0	1.5	-6.4	-9.7
	5.0	2.0	3.0	-1.0	1.0
	4.5	4.2	8.9	-4.1	-7.3

Answer:

(5	2	3	-1	1)
0	-6	2	3	23
0	0	7	-2	1
0	0	0	-8	_24)

4. If a matrix is diagonally dominant, is there ever any need for partial pivoting during the Gaussian elimination algorithm?

Answer: No. If the diagonal is already greater than the sum of the absolute values of the off-diagonal entries of the corresponding rows and columns, then adding scalar multiples of one row onto another where the scalar multiples are never greater than 1 in absolute value will never result in a need for partial pivoting.

5. What is the run time of Gaussian elimination with partial pivoting? What is the run time of Gaussian elimination without partial pivoting?

Answer: They are both $O(n^3)$ for solving a system of *n* linear equations in *n* unknowns.