Gaussian elimination with partial pivoting.

1. Perform Gaussian elimination with partial pivoting on this matrix.

$$
\left(\begin{array}{rrr:r}
1.5 & 4.6 & -0.8 & 12.3 \\
-3.5 & -4.6 & 4.8 & -22.3 \\
5.0 & 2.0 & 4.0 & 1.0
\end{array}\right)
$$

Answer:

$$
\left(\begin{array}{rrr:r}
5 & 2 & 4 & 1 \\
0 & 4 & -2 & 12 \\
0 & 0 & 6 & -12
\end{array}\right)
$$

2. Perform Gaussian elimination with partial pivoting on this matrix.

$$
\left(\begin{array}{ll:c}
4.1 & 8.55 & 17.45 \\
8.2 & 4.5 & -2.9
\end{array}\right)
$$

Answer:

$$
\left(\begin{array}{ll:l}
8.2 & 4.5 & -2.9 \\
0 & 6.3 & 18.9
\end{array}\right)
$$

3. Perform Gaussian elimination with partial pivoting on this matrix.

$$
\left(\begin{array}{rrrr:r}
-3.5 & -7.4 & -0.1 & 3.7 & 22.3 \\
4.0 & -2.0 & 1.5 & -6.4 & -9.7 \\
5.0 & 2.0 & 3.0 & -1.0 & 1.0 \\
4.5 & 4.2 & 8.9 & -4.1 & -7.3
\end{array}\right)
$$

Answer:

$$
\left(\begin{array}{rrrr:r}
5 & 2 & 3 & -1 & 1 \\
0 & -6 & 2 & 3 & 23 \\
0 & 0 & 7 & -2 & 1 \\
0 & 0 & 0 & -8 & -24
\end{array}\right)
$$

4. If a matrix is diagonally dominant, is there ever any need for partial pivoting during the Gaussian elimination algorithm?

Answer: No. If the diagonal is already greater than the sum of the absolute values of the off-diagonal entries of the corresponding rows and columns, then adding scalar multiples of one row onto another where the scalar multiples are never greater than 1 in absolute value will never result in a need for partial pivoting.
5. What is the run time of Gaussian elimination with partial pivoting? What is the run time of Gaussian elimination without partial pivoting?

Answer: They are both $\mathrm{O}\left(n^{3}\right)$ for solving a system of n linear equations in n unknowns.

